Nonnegative Local Coordinate Factorization for Image Representation
نویسندگان
چکیده
منابع مشابه
Transfer Nonnegative Matrix Factorization for Image Representation
Nonnegative Matrix Factorization (NMF) has received considerable attention due to its psychological and physiological interpretation of naturally occurring data whose representation may be partsbased in the human brain. However, when labeled and unlabeled images are sampled from different distributions, they may be quantized into different basis vector space and represented in different coding ...
متن کاملImage representation using Laplacian regularized nonnegative tensor factorization
Tensor provides a better representation for image space by avoiding information loss in vectorization. Nonnegative tensor factorization (NTF), whose objective is to express an n-way tensor as a sum of k rank-1 tensors under nonnegative constraints, has recently attracted a lot of attentions for its efficient and meaningful representation. However, NTF only sees Euclidean structures in data spac...
متن کاملDID: Distributed Incremental Block Coordinate Descent for Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) has attracted much attention in the last decade as a dimension reduction method in many applications. Due to the explosion in the size of data, naturally the samples are collected and stored distributively in local computational nodes. Thus, there is a growing need to develop algorithms in a distributed memory architecture. We propose a novel distributed a...
متن کاملLocal coordinate based graph-regularized NMF for image representation
Non-negative matrix factorization (NMF) has been a powerful data representation tool which has been widely applied in pattern recognition and computer vision due to its simplicity and effectiveness. However, existing NMF methods suffer from one or both of the following deficiencies: (1) they cannot theoretically guarantee the decomposition results to be sparse, and (2) they completely neglect g...
متن کاملA Modified Digital Image Watermarking Scheme Based on Nonnegative Matrix Factorization
This paper presents a modified digital image watermarking method based on nonnegative matrix factorization. Firstly, host image is factorized to the product of three nonnegative matrices. Then, the centric matrix is transferred to discrete cosine transform domain. Watermark is embedded in low frequency band of this matrix and next, the reverse of the transform is computed. Finally, watermarked ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Image Processing
سال: 2013
ISSN: 1057-7149,1941-0042
DOI: 10.1109/tip.2012.2224357